Interpretando la d de Cohen como medida del tamaño del efecto

Una Visualización Interactiva

Creado por Kristoffer Magnusson

Traducido por Daniel Alcalá

Compartir

La d de Cohen como medida del tamaño del efecto es sumamente popular en psicología. Sin embargo, su interpretación no es evidente y los investigadores suelen utilizar pautas generales para interpretar un efecto como pequeño (0,2), mediano (0,5) y grande (0,8). Además, en muchos casos es discutible si la diferencia de medias estandarizada es más interpretable que la diferencia de medias sin estandarizar.

Para facilitar la interpretación de la d de Cohen, esta visualización ofrece las siguientes representaciones: la superposición visual, la U3 de Cohen, la probabilidad de superioridad, el porcentaje de superposición y el número necesario para tratar. También permite cambiar la desviación estándar y muestra la diferencia no estandarizada.

d de Cohen

Cargando la visualización

U3 de Cohen

% Superposición

Probabilidad de Superioridad

Número Necesario para Tratar

Una Explicación en Lenguaje Cotidiano

Con una d de Cohen de 0.80, el 78.8% del grupo "treatment" estará por encima de la media del grupo "control" (U3 de Cohen), el 68.9% de los dos grupos se solaparán, y hay un un 71.4% de probabilidad de que una persona elegida al azar del grupo de tratamiento tenga una puntuación más alta que una persona elegida al azar del grupo control (probabilidad de superioridad). Además, para tener un resultado favorable más en el grupo "treatment" que en el grupo "control", necesitamos tratar a 3.5 personas en promedio. Esto significa que si hay 100 personas en cada grupo, y suponemos que 20 personas tienen resultados favorables en el grupo "control", entonces 20 + 28.3 personas en el grupo "treatment" tendrán resultados favorables.1

1Los valores son promedios, y se asume que el 20 (CER) del grupo "control" tiene "resultados favorables", es decir, sus resultados están por debajo de algún punto de corte. Cambia esto pulsando el símbolo de configuración a la derecha del slider. Ve a la sección de fórmulas para obtener más información.

Escrito por Kristoffer Magnusson, investigador en psicología clínica. Puedes seguirle en Twitter y pasarte por el discord de ciencia abierta Git Gud Science.

FAQ

Modifica la d de Cohen

Utiliza el slider para modificar el valor de la d de Cohen, o abre el menú de ajustes y cambia los parámetros. También se pueden controlar los inputs con las flechas del teclado.

Ajustes

Puedes configurar los siguientes ajustes haciendo click en el icono de ajustes a la derecha del slider.

  • Parámetros
    • Media 1
    • Media 2
    • Desviación típica
    • Tasa de eventos de control (CER)
  • Etiquetas
    • Eje X
    • Distribución 1
    • Distribución 2
  • Ajustes del slider
    • Máximo del slider
    • Salto del slider: Especifica el tamaño de un paso del slider

Guardar ajustes

Los ajustes se pueden guardar en el localStorage del navegador y, por lo tanto, permanecerán en tus futuras visitas.

Barrido y reescalado

Puedes hacer un barrido del eje X haciendo click en la visualización y arrastrándola. Haz doble click en la visualización para centrarla y reescalarla.

Uso sin conexión

Esta página se almacena en caché utilizando un Service Worker y funcionará incluso cuando estés sin conexión.

d de Cohen

La d de Cohen es simplemente la diferencia media estandarizada,

,

donde es el parámetro poblacional de la d de Cohen. Se asume que , es decir, las varianzas poblacionales son homogéneas. Y es la media de la población correspondiente.

U3 de Cohen

Cohen (1977) definió U3 como una medida de no superposición, donde “tomamos el porcentaje de la población A que supera la mitad superior de los casos de la población Β”. La d de Cohen puede convertirse en la U3 de Cohen mediante la siguiente fórmula

donde es la función de distribución acumulada de la distribución normal estándar, y la d de Cohen poblacional.

Superposición

Generalmente se le denomina coeficiente de superposición (OVL). La d de Cohen puede convertirse a OVL mediante la siguiente fórmula (Reiser y Faraggi, 1999)

donde es la función de distribución acumulada de la distribución normal estándar, y la d de Cohen poblacional.

Probabilidad de superioridad

Se trata de una medida del tamaño del efecto con muchos nombres: índice universal del tamaño del efecto (common language effect size; CL), área bajo la curva ROC (Característica Operativa del Receptor) o simplemente A para su versión no paramétrica (Ruscio y Mullen, 2012). Está pensada para ser más intuitiva para personas sin formación en estadística. Este tamaño del efecto proporciona la probabilidad de que una persona elegida al azar del grupo de tratamiento tenga una puntuación más alta que una persona elegida al azar del grupo control. La d de Cohen puede convertirse en CL mediante la siguiente fórmula (Ruscio, 2008)

donde es la función de distribución acumulada de la distribución normal estándar, y la d de Cohen poblacional.

Número Necesario para Tratar

El NNT es el número de pacientes que necesitaríamos tratar con la intervención para conseguir un resultado favorable más en comparación con el grupo control. Furukawa y Leucht (2011) ofrecen la siguiente fórmula para convertir la d de Cohen en NNT

donde es la función de distribución acumulada de la distribución normal estándar y su inversa, el CER es la tasa de eventos de control, y la d de Cohen poblacional. N.B. El CER está fijado en el 20% en la visualización de arriba. Puedes cambiarlo pulsando el símbolo de ajustes a la derecha del slider**. La definición de un “evento” o una “respuesta” es arbitraria y podría definirse como la proporción de pacientes que están en remisión, por ejemplo, por debajo de algún punto de corte en un cuestionario estandarizado. Es posible convertir la d de Cohen en una versión del NNT que sea independiente de la tasa de eventos de control. El lector interesado puede consultar Furukawa y Leucht (2011), donde se ofrece una explicación detallada de por qué esto complica la interpretación del NNT.

Código en R para calcular el NNT a partir de la d de Cohen

Como muchos habéis preguntado por el código R para la fórmula anterior, aquí lo tenéis

Referencias

  • Baguley, T. (2009). Standardized or simple effect size: what should be reported? British journal of psychology, 100(Pt 3), 603–17.
  • Cohen, J. (1977). Statistical power analysis for the behavioral sciencies. Routledge.
  • Furukawa, T. A., & Leucht, S. (2011). How to obtain NNT from Cohen’s d: comparison of two methods. PloS one, 6(4).
  • Reiser, B., & Faraggi, D. (1999). Confidence intervals for the overlapping coefficient: the normal equal variance case. Journal of the Royal Statistical Society, 48(3), 413-418.
  • Ruscio, J. (2008). A probability-based measure of effect size: robustness to base rates and other factors. Psychological methods, 13(1), 19–30.
  • Ruscio, J., & Mullen, T. (2012). Confidence Intervals for the Probability of Superiority Effect Size Measure and the Area Under a Receiver Operating Characteristic Curve. Multivariate Behavioral Research, 47(2), 201–223.

Cita esta página conforme a tu guía de estilo favorita. Las referencias que aparecen a continuación se generan automáticamente y contienen la información correcta.

APA 7

Magnusson, K. (2022). Interpreting Cohen's d effect size: An interactive visualization (Version 2.6.0) [Web App]. R Psychologist. https://rpsychologist.com/cohend/

BibTex

Por favor, notifica los errores o las sugerencias abriendo una propuesta en GitHub, si quieres hacer una pregunta utiliza los debates de GitHub

No, no hay problema. La aplicación se ejecuta en el navegador, por lo que el servidor sólo tiene que proporcionar los archivos.

Esto es adrede, puedes leer más sobre mis motivos en esta entrada del blog: Dónde se equivocó Cohen – la proporción de superposición entre dos distribuciones normales

Sí, ¡adelante! Yo no he inventado la representación gráfica de dos distribuciones gaussianas superpuestas. Esta visualización está dedicada al dominio público, lo que significa que “puedes copiar, modificar, distribuir la obra y hacer comunicación pública, incluso para fines comerciales, sin pedir permiso” (ver licencia Creative Commons CC0 Universal). Aunque no es necesario citarla, ¡siempre se agradece!

El código fuente de esta página tiene licencia MIT, y el texto de la página es CC-BY 4.0.

Contribuir/Donar

Hay muchas formas de contribuir al software libre y abierto. Si te gusta mi trabajo y quieres apoyarlo puedes:

¡Muchísimas gracias a los 140 seguidores que me han comprado 327 cafés!

Jason Rinaldo ha comprado ☕☕☕☕☕☕☕☕☕☕ (10) cafés

I've been looking for applets that show this for YEARS, for demonstrations for classes. Thank you so much! Students do not need to tolarate my whiteboard scrawl now. I'm sure they'd appreciate you, too.l

@metzpsych ha comprado ☕☕☕☕☕ (5) cafés

Always the clearest, loveliest simulations for complex concepts. Amazing resource for teaching intro stats!

Ryo ha comprado ☕☕☕☕☕ (5) cafés

For a couple years now I've been wanting to create visualizations like these as a way to commit these foundational concepts to memory. But after finding your website I'm both relieved that I don't have to do that now and pissed off that I couldn't create anything half as beautiful and informative as you have done here. Wonderful job.

Diarmuid Harvey ha comprado ☕☕☕☕☕ (5) cafés

You have an extremely useful site with very accessible content that I have been using to introduce colleagues and students to some of the core concepts of statistics. Keep up the good work, and thanks!

Michael Hansen ha comprado ☕☕☕☕☕ (5) cafés

Keep up the good work!

Michael Villanueva ha comprado ☕☕☕☕☕ (5) cafés

I wish I could learn more from you about stats and math -- you use language in places that I do not understand. Cohen's D visualizations opened my understanding. Thank you

Someone ha comprado ☕☕☕☕☕ (5) cafés

Thank you, Kristoffer

Pål from Norway ha comprado ☕☕☕☕☕ (5) cafés

Great webpage, I use it to illustrate several issues when I have a lecture in research methods. Thanks, it is really helpful for the students:)

@MAgrochao ha comprado ☕☕☕☕☕ (5) cafés

Joseph Bulbulia ha comprado ☕☕☕☕☕ (5) cafés

Hard to overstate the importance of this work Kristoffer. Grateful for all you are doing.

@TDmyersMT ha comprado ☕☕☕☕☕ (5) cafés

Some really useful simulations, great teaching resources.

@lakens ha comprado ☕☕☕☕☕ (5) cafés

Thanks for fixing the bug yesterday!

@LinneaGandhi ha comprado ☕☕☕☕☕ (5) cafés

This is awesome! Thank you for creating these. Definitely using for my students, and me! :-)

@ICH8412 ha comprado ☕☕☕☕☕ (5) cafés

very useful for my students I guess

@KelvinEJones ha comprado ☕☕☕☕☕ (5) cafés

Preparing my Master's student for final oral exam and stumbled on your site. We are discussing in lab meeting today. Coffee for everyone.

Someone ha comprado ☕☕☕☕☕ (5) cafés

What a great site

@Daniel_Brad4d ha comprado ☕☕☕☕☕ (5) cafés

Wonderful work!

David Loschelder ha comprado ☕☕☕☕☕ (5) cafés

Terrific work. So very helpful. Thank you very much.

@neilmeigh ha comprado ☕☕☕☕☕ (5) cafés

I am so grateful for your page and can't thank you enough!  

@giladfeldman ha comprado ☕☕☕☕☕ (5) cafés

Wonderful work, I use it every semester and it really helps the students (and me) understand things better. Keep going strong.

Dean Norris ha comprado ☕☕☕☕☕ (5) cafés

Sal ha comprado ☕☕☕☕☕ (5) cafés

Really super useful, especially for teaching. Thanks for this!

dde@paxis.org ha comprado ☕☕☕☕☕ (5) cafés

Very helpful to helping teach teachers about the effects of the Good Behavior Game

@akreutzer82 ha comprado ☕☕☕☕☕ (5) cafés

Amazing visualizations! Thank you!

@rdh_CLE ha comprado ☕☕☕☕☕ (5) cafés

So good!

Kenneth Nilsson ha comprado ☕☕☕ (3) cafés

Keep up the splendid work!

@jeremywilmer ha comprado ☕☕☕ (3) cafés

Love this website; use it all the time in my teaching and research.

Someone ha comprado ☕☕☕ (3) cafés

Powerlmm was really helpful, and I appreciate your time in putting such an amazing resource together!

DR AMANDA C DE C WILLIAMS ha comprado ☕☕☕ (3) cafés

This is very helpful, for my work and for teaching and supervising

Georgios Halkias ha comprado ☕☕☕ (3) cafés

Regina ha comprado ☕☕☕ (3) cafés

Love your visualizations!

Susan Evans ha comprado ☕☕☕ (3) cafés

Thanks. I really love the simplicity of your sliders. Thanks!!

@MichaMarie8 ha comprado ☕☕☕ (3) cafés

Thanks for making this Interpreting Correlations: Interactive Visualizations site - it's definitely a great help for this psych student! 😃

Zakaria Giunashvili, from Georgia ha comprado ☕☕☕ (3) cafés

brilliant simulations that can be effectively used in training

Someone ha comprado ☕☕☕ (3) cafés

@PhysioSven ha comprado ☕☕☕ (3) cafés

Amazing illustrations, there is not enough coffee in the world for enthusiasts like you! Thanks!

Cheryl@CurtinUniAus ha comprado ☕☕☕ (3) cafés

🌟What a great contribution - thanks Kristoffer!

vanessa moran ha comprado ☕☕☕ (3) cafés

Wow - your website is fantastic, thank you for making it.

Someone ha comprado ☕☕☕ (3) cafés

mikhail.saltychev@gmail.com ha comprado ☕☕☕ (3) cafés

Thank you Kristoffer This is a nice site, which I have been used for a while. Best Prof. Mikhail Saltychev (Turku University, Finland)

Someone ha comprado ☕☕☕ (3) cafés

Ruslan Klymentiev ha comprado ☕☕☕ (3) cafés

@lkizbok ha comprado ☕☕☕ (3) cafés

Keep up the nice work, thank you!

@TELLlab ha comprado ☕☕☕ (3) cafés

Thanks - this will help me to teach tomorrow!

SCCT/Psychology ha comprado ☕☕☕ (3) cafés

Keep the visualizations coming!

@elena_bolt ha comprado ☕☕☕ (3) cafés

Thank you so much for your work, Kristoffer. I use your visualizations to explain concepts to my tutoring students and they are a huge help.

A random user ha comprado ☕☕☕ (3) cafés

Thank you for making such useful and pretty tools. It not only helped me understand more about power, effect size, etc, but also made my quanti-method class more engaging and interesting. Thank you and wish you a great 2021!

@hertzpodcast ha comprado ☕☕☕ (3) cafés

We've mentioned your work a few times on our podcast and we recently sent a poster to a listener as prize so we wanted to buy you a few coffees. Thanks for the great work that you do!Dan Quintana and James Heathers - Co-hosts of Everything Hertz 

Cameron Proctor ha comprado ☕☕☕ (3) cafés

Used your vizualization in class today. Thanks!

eshulman@brocku.ca ha comprado ☕☕☕ (3) cafés

My students love these visualizations and so do I! Thanks for helping me make stats more intuitive.

Someone ha comprado ☕☕☕ (3) cafés

Adrian Helgå Vestøl ha comprado ☕☕☕ (3) cafés

@misteryosupjoo ha comprado ☕☕☕ (3) cafés

For a high school teacher of psychology, I would be lost without your visualizations. The ability to interact and manipulate allows students to get it in a very sticky manner. Thank you!!!

Chi ha comprado ☕☕☕ (3) cafés

You Cohen's d post really helped me explaining the interpretation to people who don't know stats! Thank you!

Someone ha comprado ☕☕☕ (3) cafés

You doing useful work !! thanks !!

@ArtisanalANN ha comprado ☕☕☕ (3) cafés

Enjoy.

@jsholtes ha comprado ☕☕☕ (3) cafés

Teaching stats to civil engineer undergrads (first time teaching for me, first time for most of them too) and grasping for some good explanations of hypothesis testing, power, and CI's. Love these interactive graphics!

@notawful ha comprado ☕☕☕ (3) cafés

Thank you for using your stats and programming gifts in such a useful, generous manner. -Jess

Mateu Servera ha comprado ☕☕☕ (3) cafés

A job that must have cost far more coffees than we can afford you ;-). Thank you.

@cdrawn ha comprado ☕☕☕ (3) cafés

Thank you! Such a great resource for teaching these concepts, especially CI, Power, correlation.

Julia ha comprado ☕☕☕ (3) cafés

Fantastic work with the visualizations!

@felixthoemmes ha comprado ☕☕☕ (3) cafés

@dalejbarr ha comprado ☕☕☕ (3) cafés

Your work is amazing! I use your visualizations often in my teaching. Thank you. 

@PsychoMouse ha comprado ☕☕☕ (3) cafés

Excellent!  Well done!  SOOOO Useful!😊 🐭 

Dan Sanes ha comprado ☕☕ (2) cafés

this is a superb, intuitive teaching tool!

@whlevine ha comprado ☕☕ (2) cafés

Thank you so much for these amazing visualizations. They're a great teaching tool and the allow me to show students things that it would take me weeks or months to program myself.

Someone ha comprado ☕☕ (2) cafés

@notawful ha comprado ☕☕ (2) cafés

Thank you for sharing your visualization skills with the rest of us! I use them frequently when teaching intro stats. 

Stewart ha comprado ☕ (1) café

This tool is awesome!

Someone ha comprado ☕ (1) café

Aidan Nelson ha comprado ☕ (1) café

Such an awesome page, Thank you

Someone ha comprado ☕ (1) café

Ellen Kearns ha comprado ☕ (1) café

Dr Nazam Hussain ha comprado ☕ (1) café

Someone ha comprado ☕ (1) café

Eva ha comprado ☕ (1) café

I've been learning about power analysis and effect sizes (trying to decide on effect sizes for my planned study to calculate sample size) and your Cohen's d interactive tool is incredibly useful for understanding the implications of different effect sizes!

Someone ha comprado ☕ (1) café

Someone ha comprado ☕ (1) café

Thanks a lot!

Someone ha comprado ☕ (1) café

Reena Murmu Nielsen ha comprado ☕ (1) café

Tony Andrea ha comprado ☕ (1) café

Thanks mate

Tzao ha comprado ☕ (1) café

Thank you, this really helps as I am a stats idiot :)

Melanie Pflaum ha comprado ☕ (1) café

Sacha Elms ha comprado ☕ (1) café

Yihan Xu ha comprado ☕ (1) café

Really appreciate your good work!

@stevenleung ha comprado ☕ (1) café

Your visualizations really help me understand the math.

Junhan Chen ha comprado ☕ (1) café

Someone ha comprado ☕ (1) café

Someone ha comprado ☕ (1) café

Michael Hansen ha comprado ☕ (1) café

ALEXANDER VIETHEER ha comprado ☕ (1) café

mather ha comprado ☕ (1) café

Someone ha comprado ☕ (1) café

Bastian Jaeger ha comprado ☕ (1) café

Thanks for making the poster designs OA, I just hung two in my office and they look great!

@ValerioVillani ha comprado ☕ (1) café

Thanks for your work.

Someone ha comprado ☕ (1) café

Great work!

@YashvinSeetahul ha comprado ☕ (1) café

Someone ha comprado ☕ (1) café

Angela ha comprado ☕ (1) café

Thank you for building such excellent ways to convey difficult topics to students!

@inthelabagain ha comprado ☕ (1) café

Really wonderful visuals, and such a fantastic and effective teaching tool. So many thanks!

Someone ha comprado ☕ (1) café

Someone ha comprado ☕ (1) café

Yashashree Panda ha comprado ☕ (1) café

I really like your work.

Ben ha comprado ☕ (1) café

You're awesome. I have students in my intro stats class say, "I get it now," after using your tool. Thanks for making my job easier.

Gabriel Recchia ha comprado ☕ (1) café

Incredibly useful tool!

Shiseida Sade Kelly Aponte ha comprado ☕ (1) café

Thanks for the assistance for RSCH 8210.

@Benedikt_Hell ha comprado ☕ (1) café

Great tools! Thank you very much!

Amalia Alvarez ha comprado ☕ (1) café

@noelnguyen16 ha comprado ☕ (1) café

Hi Kristoffer, many thanks for making all this great stuff available to the community!

Eran Barzilai ha comprado ☕ (1) café

These visualizations are awesome! thank you for creating it

Someone ha comprado ☕ (1) café

Chris SG ha comprado ☕ (1) café

Very nice.

Gray Church ha comprado ☕ (1) café

Thank you for the visualizations. They are fun and informative.

Qamar ha comprado ☕ (1) café

Tanya McGhee ha comprado ☕ (1) café

@schultemi ha comprado ☕ (1) café

Neilo ha comprado ☕ (1) café

Really helpful visualisations, thanks!

Someone ha comprado ☕ (1) café

This is amazing stuff. Very slick. 

Someone ha comprado ☕ (1) café

Sarko ha comprado ☕ (1) café

Thanks so much for creating this! Really helpful for being able to explain effect size to a clinician I'm doing an analysis for. 

@DominikaSlus ha comprado ☕ (1) café

Thank you! This page is super useful. I'll spread the word. 

Someone ha comprado ☕ (1) café

Melinda Rice ha comprado ☕ (1) café

Thank you so much for creating these tools! As we face the challenge of teaching statistical concepts online, this is an invaluable resource.

@tmoldwin ha comprado ☕ (1) café

Fantastic resource. I think you would be well served to have one page indexing all your visualizations, that would make it more accessible for sharing as a common resource.

Someone ha comprado ☕ (1) café

Fantastic Visualizations! Amazing way to to demonstrate how n/power/beta/alpha/effect size are all interrelated - especially for visual learners! Thank you for creating this?

@jackferd ha comprado ☕ (1) café

Incredible visualizations and the best power analysis software on R.

Cameron Proctor ha comprado ☕ (1) café

Great website!

Someone ha comprado ☕ (1) café

Hanah Chapman ha comprado ☕ (1) café

Thank you for this work!!

Someone ha comprado ☕ (1) café

Jayme ha comprado ☕ (1) café

Nice explanation and visual guide of Cohen's d

Bart Comly Boyce ha comprado ☕ (1) café

thank you

Dr. Mitchell Earleywine ha comprado ☕ (1) café

This site is superb!

Florent ha comprado ☕ (1) café

Zampeta ha comprado ☕ (1) café

thank you for sharing your work. 

Mila ha comprado ☕ (1) café

Thank you for the website, made me smile AND smarter :O enjoy your coffee! :)

Deb ha comprado ☕ (1) café

Struggling with statistics and your interactive diagram made me smile to see that someone cares enough about us strugglers to make a visual to help us out!😍 

Someone ha comprado ☕ (1) café

@exerpsysing ha comprado ☕ (1) café

Much thanks! Visualizations are key to my learning style! 

Someone ha comprado ☕ (1) café

Patrocinadores

Puedes patrocinar mi trabajo de código abierto usando GitHub Sponsors y que tu nombre aparezca aquí.

Promotores ✨❤️

Las solicitudes de extracción (o pull requests) también son bienvenidas, o puedes contribuir sugiriendo nuevas características, añadiendo referencias útiles o ayudando a corregir errores tipográficos. Solo tienes que abrir una propuesta (o issue) en GitHub.

Webmentions

Kristoffer Magnusson
Thanks! Would it work if I replace "configuraciones" with "ajustes" which is used in the current translation rpsychologist.com/es/cohend/
Kristoffer Magnusson
Both the French and Spanish version is now updated, really appreciate the help! rpsychologist.com/es/cohend/ rpsychologist.com/fr/cohend/
Juan Pablo
Juan Pablo 2022-09-19
They are synonymous. I'll use "ajustes" if there is already in the current translation instead of "configuraciones".
Hülya Aldemir
Hülya Aldemir 2021-02-16
Niiiiiiiiiiiiiiiiiiccccceeeeeeeeeeeeee
Daniel Alcalá López
Esta aplicación web me ha ayudado tanto a entender mejor qué implica un determinado tamaño del efecto, que he echado una mano a su creador @krstoffr y la he traducido al español. Si no la conocías, 100% recomendada ‼️

(Lamentablemente, las webmentions enviadas antes de 2021 no aparecerán aquí.)

Más Visualizaciones

Understanding p-values Through Simulations

An interactive simulation to help explain p-values

Maximum Likelihood

An interactive post covering various aspects of maximum likelihood estimation.

Cohen's d

An interactive app to visualize and understand standardized effect sizes.

Statistical Power and Significance Testing

An interactive version of the traditional Type I and II error illustration.

Confidence Intervals

An interactive simulation of confidence intervals

Bayesian Inference

An interactive illustration of prior, likelihood, and posterior.

Correlations

Interactive scatterplot that lets you visualize correlations of various magnitudes.

Equivalence and Non-Inferiority Testing

Explore how superiority, non-inferiority, and equivalence testing relates to a confidence interval

P-value distribution

Explore the expected distribution of p-values under varying alternative hypothesises.

t-distribution

Interactively compare the t- and normal distribution.